L2范数归一化概念和优势

  • 时间:
  • 浏览:1
  • 来源:3分时时彩官网_3分时时彩下注平台注册_3分时时彩邀请码

       归一化是你是什么数理统计中常用的数据预处理手段,在机器学习中归一化通常将数据向量每个维度的数据映射到(0,1)或(-1,1)之间的区间不可能 将数据向量的某个范数映射为1,归一化好处有另另另4个 :

       (1) 消除数据单位的影响:其一可不还可不可以将有单位的数据转为无单位的标准数据,如成年人的身高3000-3000cm、成年人体重3000-90Kg,身高的单位是厘米而体重的单位是千克,不同维度的数据单位不一样,造成原始数据不到直接代入机器学习中进行处理,就说有哪几个数据经过特定土最好的办法统一都映射到(0,1)一些 区间,从前 所有数据的取值范围有的是同另另另4个 区间里的。

       (2) 可提宽度学习模型收敛速率: 不可能 不进行归一化处理,假设宽度学习模型接受的输入向量不到另另另4个 维度x1和x2,其中X1取值为0-30000,x2取值为0-3。从前 数据在进行梯度下降计算时梯度时对应另另另4个 很扁的椭圆形,很容易在垂直等高线的方向上走一定量的之字形路线,是的迭代计算量大且迭代的次数多,造成宽度学习模型收敛慢。

       L2范数归一化处理操作是对向量X的每个维度数据x1, x2, …, xn都除以||x||2得到另另另4个 新向量,即

\[{{\bf{X}}_2} = \left( {\frac{{{x_1}}}{{{{\left\| {\bf{x}} \right\|}_2}}},\frac{{{x_2}}}{{{{\left\| {\bf{x}} \right\|}_2}}}, \cdots ,\frac{{{x_n}}}{{{{\left\| {\bf{x}} \right\|}_2}}}} \right) = \left( {\frac{{{x_1}}}{{\sqrt {x_1^2 + x_2^2 + \cdots + x_n^2} }},\frac{{{x_2}}}{{\sqrt {x_1^2 + x_2^2 + \cdots + x_n^2} }}, \cdots ,\frac{{{x_n}}}{{\sqrt {x_1^2 + x_2^2 + \cdots + x_n^2} }}} \right)\]

       若向量A = (2, 3, 6),易得向量X的L2范数为

\[{\left\| {\bf{A}} \right\|_2} = \sqrt {{2^2} + {3^2} + {6^2}} = \sqrt {4 + 9 + 36} = \sqrt {49} = 7\]

       就说有向量A的L2范数归一化后得到向量为

\[{{\bf{A}}_2} = \left( {\frac{2}{7},\frac{3}{7},\frac{6}{7}} \right)\]



图1 L2范数可不还可不可以看作是向量的长度

       L2范数有一大优势:经过L2范数归一化后,一组向量的欧式距离和它们的余弦类似于度可不还可不可以等价

       另另另4个 向量X经过L2范数归一化得到向量X2,同時 从前 向量Y经过L2范数归一化得到向量Y2。此时X2和Y2的欧式距离和余弦类似于度是等价的,下面先给出严格的数学证明。

       假设向量X = (x1, x2, …, xn),向量Y = (y1, y2, …, yn), X2和Y2的欧式距离是

\[\begin{array}{l} D\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right) = \sqrt {{{\left( {\frac{{{x_1}}}{{{{\left\| {\bf{X}} \right\|}_2}}} - \frac{{{y_1}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^2} + {{\left( {\frac{{{x_2}}}{{{{\left\| {\bf{X}} \right\|}_2}}} - \frac{{{y_2}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^2} + \cdots + {{\left( {\frac{{{x_n}}}{{{{\left\| {\bf{X}} \right\|}_2}}} - \frac{{{y_n}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^2}} \\ \quad \quad \quad \quad \quad \;\;\; = \sqrt {\left( {\frac{{\bf{X}}}{{{{\left\| {\bf{X}} \right\|}_2}}} - \frac{{\bf{Y}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right){{\left( {\frac{{\bf{X}}}{{{{\left\| {\bf{X}} \right\|}_2}}} - \frac{{\bf{Y}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^T}} \\ \quad \quad \quad \quad \quad \;\;\; = \sqrt {\frac{{{\bf{X}}{{\bf{X}}^T}}}{{\left\| {\bf{X}} \right\|_2^2}} - \frac{{{\bf{X}}{{\bf{Y}}^T}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}} - \frac{{{\bf{Y}}{{\bf{X}}^T}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}} + \frac{{{\bf{Y}}{{\bf{Y}}^T}}}{{\left\| {\bf{Y}} \right\|_2^2}}} \\ \quad \quad \quad \quad \quad \;\;\; = \sqrt {\frac{{{\bf{X}}{{\bf{X}}^T}}}{{{\bf{X}}{{\bf{X}}^T}}} - \frac{{2{\bf{X}}{{\bf{Y}}^T}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}} + \frac{{{\bf{Y}}{{\bf{Y}}^T}}}{{{\bf{Y}}{{\bf{Y}}^T}}}} \\ \quad \quad \quad \quad \quad \;\;\; = \sqrt {2 - 2\frac{{{\bf{X}}{{\bf{Y}}^T}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}}} \\ \end{array}\]

       X2和Y2的余弦类似于度为

\[\begin{array}{l} Sim\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right) = \frac{{\frac{{{x_1}}}{{{{\left\| {\bf{X}} \right\|}_2}}} \cdot \frac{{{y_1}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}{\rm{ + }}\frac{{{x_{\rm{2}}}}}{{{{\left\| {\bf{X}} \right\|}_2}}} \cdot \frac{{{y_{\rm{2}}}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}{\rm{ + }} \cdots {\rm{ + }}\frac{{{x_n}}}{{{{\left\| {\bf{X}} \right\|}_2}}} \cdot \frac{{{y_n}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}}}{{\sqrt {{{\left( {\frac{{{x_1}}}{{{{\left\| {\bf{X}} \right\|}_2}}}} \right)}^{\rm{2}}}{\rm{ + }}{{\left( {\frac{{{x_{\rm{2}}}}}{{{{\left\| {\bf{X}} \right\|}_2}}}} \right)}^{\rm{2}}}{\rm{ + }} \cdots {{\left( {\frac{{{x_{\rm{n}}}}}{{{{\left\| {\bf{X}} \right\|}_2}}}} \right)}^{\rm{2}}}} \cdot \sqrt {{{\left( {\frac{{{y_1}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^{\rm{2}}}{\rm{ + }}{{\left( {\frac{{{y_{\rm{2}}}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^{\rm{2}}}{\rm{ + }} \cdots {\rm{ + }}{{\left( {\frac{{{y_n}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^{\rm{2}}}} }} \\ \quad \quad \quad \quad \quad \;\;\; = \frac{{\frac{{{x_1}{y_1} + {x_2}{y_2} + \cdots + {x_n}{y_n}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}}}}{{\sqrt {\frac{{x_1^2 + x_2^2 + \cdots + x_n^2}}{{\left\| {\bf{X}} \right\|_2^2}}} \cdot \sqrt {\frac{{y_1^2 + y_2^2 + \cdots y_n^2}}{{\left\| {\bf{Y}} \right\|_2^2}}} }} \\ \quad \quad \quad \quad \quad \;\;\; = \frac{{\frac{{{x_1}{y_1} + {x_2}{y_2} + \cdots + {x_n}{y_n}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}}}}{{\sqrt {\frac{{x_1^2 + x_2^2 + \cdots + x_n^2}}{{x_1^2 + x_2^2 + \cdots + x_n^2}}} \cdot \sqrt {\frac{{y_1^2 + y_2^2 + \cdots y_n^2}}{{y_1^2 + y_2^2 + \cdots y_n^2}}} }} \\ \quad \quad \quad \quad \quad \;\;\; = \frac{{{x_1}{y_1} + {x_2}{y_2} + \cdots + {x_n}{y_n}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}} \\ \quad \quad \quad \quad \quad \;\;\; = \frac{{{\bf{X}}{{\bf{Y}}^T}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}} \\ \end{array}\]        结合另另另4个 表达式易得



\[D\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right) = \sqrt {2 - 2sim\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right)} \]

       即L2范数归一化处理后另另另4个 向量欧式距离等于2减去2倍余弦类似于度的算术平方根。不可能 你被里边令人昏头转向的数学公式搞晕,而我想要看 搞笑的话,这里还有你是什么仅可不还可不可以中学知识的更简单证明土最好的办法证明两者的等价性:

       假设一组二维数据,设经过L2范数归一化后向量X2 为 (p1, p2),向量Y2 为 (q1, q2)。向量X2是原点(0,0) 指向点P(p1,p2)的有向线段,向量Y2是原点(0,0)指向点Q(q1, q2)的有向线段。易得

       X2和Y2的欧式距离为线段PQ长度

       X2和Y2的余弦类似于度为∠POQ的余弦值

       根据余弦定理易得

\[\cos \angle POQ = \frac{{O{P^2} + O{Q^2} - P{Q^2}}}{{2 \cdot OP \cdot OQ}}\]

       不可能 L2范数归一化向量的长度有的是1,不可能 L2范数归一化向量的长度有的是1,没人向量对应的点肯定有的是单位圆上,就说有OP=OQ=1



图2 L2范数归一化后向量对应的点有的是单位圆上

       以后

\[\cos \angle POQ = \frac{{{1^2} + {1^2} - P{Q^2}}}{2} = \frac{{2 - P{Q^2}}}{2}\]

       即

\[sim\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right) = \frac{{2 - D{{\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right)}^2}}}{2} \Rightarrow D\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right) = \sqrt {2 - 2sim\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right)} \]

       以后经L2范数归一化后,一组向量的欧式距离和它们的余弦类似于度可等价。一些 大优势是当你算得一组经过L2范数归一化后的向量的欧式距离后,又想计算它们的余弦类似于度,可不还可不可以根据公式在O(1)时间内直接计算得到;反过来也一样。

       另外,在一些机器学习处理包中,不到欧式距离计算没人余弦类似于度计算,如Sklearn的Kmeans聚类包,一些 包不到处理欧式距离计算的数据聚类。

       而在NLP领域,一些词语或文档的类似于度定义为数据向量的余弦类似于度,不可能 直接调用Sklearn的Kmeans聚类包则不到进行聚类处理。以后可不还可不可以将词语对象的词向量不可能 文档对应的文本向量进行L2范数归一化处理。不可能 在L2范数归一化处理后的欧式距离和余弦类似于度是等价的,就说有此时可不还可不可以放心大胆用Sklearn的Kmeans进行聚类处理。